1. **Exploration of the Permutation Test**

In last lecture and today’s lecture you learned about the permutation test, used on data of the following form:

\[X_1, \ldots, X_m \sim_{iid} f(x) \]

and independently

\[Y_1, \ldots, Y_n \sim_{iid} f(y - \mu) \]

We test against the null that \(\mu = 0 \). Now, if \(f \) had been normal, then instead of a permutation test, we can perform a t-test with the following test statistic:

\[t = \frac{\bar{Y} - \bar{X}}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \]

where \(S_p \), “s-pooled”, is

\[S_p = \frac{1}{m + n - 2} \left(\sum_{i=1}^{m} (X_i - \bar{X})^2 + \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \right) \]

This is the form of the test where we’ve assumed equal variances, which comes from the location problem set up. The pdfs for \(X \) and for \(Y \) differ only by a \(\mu \)-sized shift. Then the test statistic \(t \) follows a \(t \) distribution with \(m + n - 2 \) degrees of freedom.

The idea of the permutation test is the following. We can’t assume normality, so we don’t know the distribution of \(t \). However, we can still use \(t \) by creating a “pseudo” null distribution.

The following procedure generates a number \(t^* \) from this pseudo null. From the combined data \(X_1, \ldots, X_m, Y_1, \ldots, Y_n \), shuffle it randomly to create a reordered dataset. Label the first \(m \) entries \(X^* \) and the last \(n \) entries \(Y^* \); then your data is \(X_1^*, \ldots, X_m^*, Y_1^*, \ldots, Y_n^* \). Then define a statistic \(t^* \) as

\[t^* = \frac{\bar{Y}^* - \bar{X}^*}{S_p^* \sqrt{\frac{1}{m} + \frac{1}{n}}} \]

Repeat this procedure many times (\(N \) times), and obtain values \(t^*_1, \ldots, t^*_N \). Estimate a p-value as follows. For a right tailed test, it is \(\frac{\# \text{ of } t^*_i \geq t}{N} \). For a two tailed test, it is
Math 181C (Abramson) Week 6 Homework (Thursday)

\{\# of \, |t^{*}| \geq |t|\} \cdot N. \quad \text{(This is equivalent to what was stated in class, which says to record how many data lie to the left of } -|t| \text{ and how many lie to the right of } |t|. \)

This defines “a” permutation test. But it doesn’t define “the” permutation test.

Since we no longer have to assume normality, we no longer are really beholden to define \(t \) as we did, which has its form because you must divide by \(S_p \) for it to be \(t \)-distributed.

So what if you did a test based on a different test statistic—namely

\[
t' = \frac{\bar{Y} - \bar{X}}{\sqrt{\frac{1}{m} + \frac{1}{n}}}
\]

(or just take \(t' = \bar{Y} - \bar{X} \), they only differ by a constant.) Of course the \(t^* \) is defined analogously. Is there an improvement?

This is a programming question. Your task is to generate \(X \) and \(Y \) data from a continuous distribution so that the null is not true. Then, using a computer, perform a permutation test based on both the \(t \) and \(t' \) statistics, and tell us which one is better—say, with respect to power for a fixed \(\alpha \).

2. **Spearman’s rho**

Suppose your data \((X_1, Y_1) \ldots (X_n, Y_n)\) was converted into a ranked version—that is, you replace the order statistics \(X_{(1)}, \ldots, X_{(n)}\) with \(1, \ldots, n\) and likewise for the \(Y \)’s order statistics. Then, order the data in increasing \(X \) coordinate, so it looks like \((1, R_1), (2, R_2)\ldots, (n, R_n)\) for some integers \(R_i \).

In class, you defined Spearman’s \(\rho \) as simply Pearson’s \(r \) computed with these ranked data.

\[
\rho = \frac{\sum_{i=1}^{n} (i - \bar{i})(R_i - \bar{R})}{\sqrt{\sum (i - \bar{i})^2 \sum (R_i - \bar{R})^2}}
\]

where \(\bar{i} = \bar{R} \) is shorthand for \((n + 1)/2\).

Your task is to complete in full detail what was done only partially in class—show that \(\rho \) can be written

\[
\rho = \frac{12\sum_{i=1}^{n} iR_i}{n(n^2 - 1)} - \frac{3(n + 1)}{n - 1}
\]

3. **Concordance and discordance—intuition**

A set of paired data \((X_1, Y_1) \ldots (X_n, Y_n)\) is said to be perfectly concordant if \(Y = g(X) \) for some strictly monotone increasing function \(g \). It is said to be perfectly discordant if \(Y = h(X) \) for some strictly monotone decreasing function \(h \).

In class, you saw that as \(n \to \infty \), \(\rho \) approaches the value

\[
\rho \to 1 - 6\mathbb{E}[F_X(X_1) - F_Y(Y_1)]^2
\]
in probability.

Using this, you saw justification for why, when testing monotone dependence, that if the null is true (\(\text{Corr}(X,Y) = \rho = 0 \)) that Spearman’s rho asymptotically approaches 0 in probability. You also saw a justification for why, if the data is concordant, that rho approaches 1. (It was a little handwavy, to be honest—it relied on the fact that if \(q(X) \sim \text{Unif}[0,1] \) for a monotone increasing function \(q \), then \(q \) must equal \(F_X \).)

Handwavy, then, is okay. Your task: see if you can come up with a similar argument for why discordant data results in \(\rho \to -1 \).