Plasma Response Control Using Advanced Feedback Techniques

by
M. Clement1

with
J. M. Hanson1, J. Bialek1 and G. A. Navratil1

1Columbia University

Presented at
59th Annual APS Meeting
Division of Plasma Physics
Milwaukee, WI

October 23–27, 2017

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under awards DE-FG02-04ER547611 and DE-FC02-04ER54698.
Summary

- ITER steady-state scenarios will require resistive wall mode (RWM) feedback
- Linear Quadratic Gaussian (LQG) control techniques are applicable to ITER’s internal and external coils
 - LQG offers noise and disturbance rejection
 - Use of both B_p and B_r sensors
- DIII-D experiments and simulations show promising results with external coils and LQG control
• PID control directly uses measurements to calculate feedback

measurements → controller → feedback
LQG Control Uses a System Model to Enable Noise Rejection

- PID control directly uses measurements to calculate feedback

```
measurements ➔ controller ➔ feedback
```

- LQG control requires a physics model
 - VALEN models the RWM and its interaction with the vacuum vessel and coils
- Physics model and knowledge of noise distribution allows filtering of Gaussian noise from measurements
 - More commonly known as Kalman filtering

```
measurements ➔ Kalman filter ➔ controller ➔ feedback

VALEN
```

DIII-D
NATIONAL FUSION FACILITY

1711-0139 / 4

M. Clement/APS-DPP/October 25, 2017
External Coils Provide Feedback Suppression

- DIII-D is equipped with both internal (\textit{I-coils}) and external (\textit{C-coils}) control coils
Internal Coils Drive Perturbation

- I-coils are powered in $n=1, 240^\circ$ quartets
 - Pitch angle between upper and lower coils maximizes coupling to kink structure
External Coils Provide Feedback Suppression

- C-coils are powered in $n=1, 180^\circ$ pairs
 - Feedback algorithm may be either PID or LQG using voltage control power supplies
\[\beta_n < \text{no-wall limit} \]

stable

\[J \times B = \nabla P \]

MHD equilibrium

design LQG controllers here

L-coils
C-coils
\[J \times B = \nabla P \]

MHD equilibrium

\[\beta_N < \text{no-wall limit} \]

stable

- L-coils
- C-coils

operate here with LQG control

\[J \times B = \nabla P \]

MHD equilibrium

\[\beta_N > \text{no-wall limit} \]

unstable

design LQG controllers here
I-coils Excite a Stable MHD Mode to Finite Amplitude

- In open loop, this technique is called MHD spectroscopy
- Plasma response will be greatest when rotation is in same direction as I_p
I-coil Frequency is Varied for Each Perturbation, Drives a Corresponding Plasma Response

- H-mode target discharge has many ELMs
 - LQG controller can filter these out
- Negative frequency indicates perturbation rotates counter to I_p
I-coil Frequency is Varied for Each Perturbation, Drives a Corresponding Plasma Response

• H-mode target discharge has many ELMs
 – LQG controller can filter these out
• Negative frequency indicates perturbation rotates counter to I_p

![Graph showing I-coil current, B_p sensor, and C-coil current over time](image)
Normalized Plasma Response ($G/k\text{A}$) Determines Effectiveness of Feedback Algorithms

- Identifies the plasma response at the perturbation frequency
- Normalized plasma response = $1.53 \, G/0.58 \, k\text{A} = 2.61 \, G/k\text{A}$
• Data points filtered on time averaged $<\beta_n/li>$
 - Ensures similar discharges are compared
• Open loop perturbations
Open Loop Response Agrees With Experiment Simulations Using VALEN

- Data points filtered on time averaged \(<\beta_N/\ell_i>\)
 - Ensures similar discharges are compared
- Open loop perturbations
- Open loop simulation
• Data points filtered on time averaged $<\beta_N/\ell_i>$
 – Ensures similar discharges are compared
• Open loop perturbations
• Open loop simulation
• Closed loop perturbations

Closed Loop Response Agrees With Experiment Simulations Using VALEN

![Graph showing normalized plasma response with perturbation frequency](image-url)
Closed Loop Response Agrees With Experiment Simulations Using VALEN

- Data points filtered on time averaged $<\beta_N/\ell_i>$
 - Ensures similar discharges are compared
- Open loop perturbations
- Open loop simulation
- Closed loop perturbations
- Closed loop simulation
I-coil or C-coil Feedback Has Helped AT Discharges Access Higher β_N After Failing Without Feedback

- Equilibrium reconstructed parameters of AT discharge
- C-coil feedback as effective as internal coils
C-coil Feedback Nearly Reproduces Performance of a DIII-D Steady State AT Discharge

• Comparable β_N and energy confinement time achieved during flattop
Conclusions

• C-coil LQG feedback is as effective as I-coil feedback using proportional gain only

• LQG can optimize effectiveness of ITER’s internal coils

• These techniques are promising for external coils on DEMO

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
VALEN Models the RWM and its Interaction with Surrounding Conductors

- Finite element code of coupled circuit equations
- RWM is represented as a current on the plasma surface
- Provides linear model for LQG controller

\[
\begin{bmatrix}
L_{ww} & L_{w_f} & L_{wp} \\
L_{f_w} & L_{f_f} & L_{f_p}
\end{bmatrix}
\frac{d}{dt} \begin{bmatrix} I_w \\ I_f \\ I_d \end{bmatrix} = - \begin{bmatrix} R_w & 0 & 0 \\
0 & R_f & 0 \\
0 & 0 & R_p \end{bmatrix} \begin{bmatrix} I_w \\ I_f \\ I_d \end{bmatrix} + \begin{bmatrix} 0 \\ V_f \\ 0 \end{bmatrix}
\]

User defines torque and stability parameters

\[\begin{bmatrix} S \end{bmatrix} \begin{bmatrix} \alpha \end{bmatrix} \]

VALEN outputs three matrices: L, R and M which are part of the above linear ODE, where the dynamic variables (state) are the currents in the model's finite elements

M. Clement/APS-DPP/October 25, 2017