
250B Problem Set 4

William Fedus

February 19, 2015

1 Properties of Σ

1.1 Invertibility from eigenvalues

If any of the Σ eigenvalues λi = 0, the matrix is not invertible. We can see that
any λi = 0 implies that the matrix is not invertible because if λi = 0, then we
assume there is a nontrivial solution with

Σxi = 0xi = 0 (1)

however, by the Invertible Matrix Theorem, if Σ was invertible then there
would only be a trivial solution, therefore, an eigenvalue of 0 implies non-
invertibility.

1.2 Eigenvalues and Eigenvectors

Let c > 0 be any constant and assume we know that Σx = λx, then the
eigenvalues of Σ + cI are found in the normal procedure,

(Σ + cI)x = (λ+ c)x ≡ λ′x (2)

so we see that eigenvalues of this new matrix are simply λ′ = λ + c. The
eigenvectors u1, . . . , un will remain the same since we have only rescaled the
eigenvalues.

1.3 Inverse of Σ

Σ may be written in the spectral decomposition as

Σ = QΛQT (3)

where Q is a matrix of the eigenvectors in column format and Λ is the diagonal
matrix of eigenvalues. The inverse of Σ may be written as

Σ−1 = QΛ−1QT (4)

which implies that the eigenvalues of Σ−1 are simply 1/λi∀i.

1

2 Regression

2.1 Convexity of L(w) as a Function of w

For a set of data
(
(x(1), y(1)), . . . , (x(n), y(n))

)
∈ Rp×R, we define a loss function

L(w) =

n∑
i=1

(
y(i) − w · x(i)

)2
(5)

Recall, to test convexity, we need to show that the Hessian matrix H, as
defined in Equation 6, is positive semi-definite for all z ∈ Rp.

Hjk =
∂2f

∂zk∂zj
(6)

so we calculate the Hessian for Equation 5,

Hjk =
∂2L

∂wj∂wj
= 2

n∑
i=1

x
(i)
j x

(i)
j (7)

which indicates that H may be written in the form,

H = 2xxT (8)

to test if this is positive semi-definite, we check if the definition zTHz ≥ 0 holds,

zTHz = 2zTxxT z

= 2
(
zTx

) (
xT z

)
= 2||xT z||2

= ≥ 0

2.2 Gradient Descent Update

In order to find the w which minimizes Equation 5, we can use the iterative
procedure of gradient descent,

wt+1 = wt − ηt∇L(wt) (9)

which for L(w) becomes

wt+1 = wt + 2ηt

n∑
i=1

(
y(i) − w · x(i)

)
x(i) (10)

2

2.3 Newton-Raphson Update

The Newton-Raphson procedure relies on 2nd order Taylor approximation and
has the following update form,

wt+1 = wt − ηtH−1(wt)∇L(wt) (11)

so for L(w) the update rule will become,

wt+1 = wt + ηt(2xx
T)−1

n∑
i=1

(
y(i) − w · x(i)

)
x(i) (12)

This result is very similar to the gradient descent update rule, however, now we
compute the inverse of the Hessian matrix H−1 = (2xxT)−1 in order to create
a second order model.

3 Convexity

We show that the following functions f : Rp → R are convex.

3.1 f(x) = xTMx, where M ∈ Rp×p

We may write f(x) as,

f(x) = xTMx =
∑
i,j

xiMijxj (13)

and then

Hkl =
∂2f

∂xk∂xl
= Mkl (14)

but since M is positive semidefinite, then H is also positive semidefinite and
the function f(x) is convex.

3.2 f(x) = eu·x, for some u ∈ Rp

We may write the Hessian matrix H as,

Hij =
∂2f

∂xi∂xj
= eu·xuiuj (15)

so then H = eu·xuuT which can be shown to be positive semidefinite from the
same argument in Section 2.1.

3

3.3 f(x) = max (g(x), h(x)), where g and h are convex.

Here, both g(x) and h(x) are assumed to be convex, and we will take the
maximum of both of these to find f(x). Since both functions are convex, both
of their Hessian matrices, Hg and Hh, respectively, will be positive semidefinite.
The Hessian matrix of f(x), Hf will be either Hg and Hh and therefore, since
both are positive semidefinite, Hf will be positive semidefinite implying that
f(x) is convex.

4 Logistic Regression using Gradient Descent

4.1 Algorithm

Our function will return a classification vector w ∈ Rp obtained by gradient
descent on the logistic regression loss function, Equation 16

L(w) =

n∑
i=1

ln
(

1 + e−y
(i)(w·x(i))

)
(16)

In order to find the w which minimizes Equation 16, we use gradient descent
for logistic regression as described in Algorithm 1.

Algorithm 1 Gradient Descent

1: procedure Gradient Descent for Logistic Regression
2: w ← 0
3: for t = 0, . . . , m do
4: wt+1 = wt + ηt

∑n
i=1 y

(i)x(i)Pwt

(
−y(i)|x(i)

)
5: return w

where n is the number of training examples and the step size is ηt. In a simplest
format, ηt may be chosen to be a constant value, that is, the algorithm will
take a constant step size at each iteration. However, for step sizes too small,
convergence may be excessively slow and for step sizes too large, convergence
may be an issue since the algorithm may overstep the equilibrium. To choose
ηt, we employ the backtracking line search to minimize L(wt+1) algorithm.

4.2 Performance on Toy Data Set

We run this algorithm on the toy data set of 6 points in R2 provided, each with
label ±1. Convergence of the algorithm is defined by sequential changes of the
loss function L(w) of ε < 0.001 which is achieved after 2181 iterations of the
algorithm. The resulting decision boundary is seen in Figure 4.2.

This trivial data set is linearly separable with a considerable margin, but the
number of iterations before convergence to our established tolerance is slow. In
order to see the operation of the algorithm, we show the state of the classification

4

Figure 1: Resulting classification boundary in black after 2181 iterations of the
gradient descent algorithm with backtracking line search for ηt selection. Toy
data set are plotted in red (+1 label) and blue (−1 label).

boundary after 10, 100 and 1000 iterations of the algorithm (all pre-converged)
in Figure 4.2

Figure 2: Resulting classification boundary in black after 10,100 and 1000 it-
erations of the gradient descent algorithm with backtracking line search for ηt
selection. Toy data set are plotted in red (+1 label) and blue (−1 label).

5

Notice that the algorithm continues to move towards the optimal solution,
however, the time to convergence simply takes a long time with this type of
data.

4.3 Performance on the Scaled Toy Data Set

The toy data set has considerably higher variance in the x2 coordinate, where
points range [1, 40]. To normalize this to be inline with the range associated with
the x1 cooridiante, we scale the second axis down by a factor of 10. Now when
we perform gradient descent, we achieve very rapid convergence after only 55
iterations (with convergence defined identically to Section 4.2), a several order
of magnitude improvement. The resulting classification boundary is seen in
Figure 4.3.

Figure 3: Resulting classification boundary in black after only 55 iterations of
the gradient descent algorithm with backtracking line search for ηt selection.
The rescaled toy data set are plotted in red (+1 label) and blue (−1 label).

This indicates the importance of scaling each feature to comparable ranges
before using this methodology.

4.4 Performance on General 2D Data

As a final test of the gradient descent algorithm, we consider the performance
on 100 data points drawn from two multivariate Gaussian distributions, one
defined as generating points with label +1 and one with label −1. Here the
resulting points overlap and thus are not perfectly linearly separable. In Figure
4.4 we see the resulting decision boundary in black as well as the labeled points.

As we can see, the logistic regression gradient descent, with ηt chosen via
backtracking line search has performed well and finds a very suitable linear

6

Figure 4: Resulting classification boundary in black after only 20 iterations of
the gradient descent algorithm with backtracking line search for ηt selection.
The rescaled toy data set are plotted in red (+1 label) and blue (−1 label).

classifier in these data sets.

7

