Lazy Counterfactual Symbolic Execution

Anonymous Author(s)

Abstract
We present counterfactual symbolic execution, a new approach that produces counterexamples that localize the causes of failure of static verification. First, we develop a notion of symbolic weak head normal form and use it to define lazy symbolic execution reduction rules for non-strict languages like Haskell. Second, we introduce counterfactual branching, a new method to identify places where verification fails due to imprecise specifications (as opposed to incorrect code). Third, we show how to use counterfactual symbolic execution to localize refinement type errors, by translating refinement types into assertions. We implement our approach in a new Haskell symbolic execution engine, G2, and evaluate it on a corpus of 7550 errors gathered from users of the LiquidHaskell refinement type system. We show that for 97.7% of these errors, G2 is able to quickly find counterexamples that show how the code or specifications must be fixed to enable verification.

1 Introduction

Modular verifiers allow programmers to specify correctness properties of their code using function contracts, such as pre- and post-conditions (e.g. EscJava [9], DAFNY [16]), or refinement types (e.g. DML [37], F* [29]). Unfortunately, modular verifiers can be very difficult to use: when verification fails, the hapless programmer is given no feedback about why their code was rejected, let alone how they can fix it.

There are two ways in which (modular) verification can fail when checking if a function \(f \) satisfies a contract given by a pre-condition \(P \) and a post-condition \(Q \). First, the code may be incorrect. That is, the pre-condition \(P \) may be too weak and the post-condition may only hold on a smaller set of inputs than those described by the pre-condition. Alternatively, the post-condition \(Q \) may be too strong i.e. the function’s code is incorrect and establishes a weaker property than stipulated by the postcondition.

Second, more perniciously, the code of \(f \) may be correct, but verification may still fail as the library functions’ contracts may be wrong: the post-condition for some callee (library) function \(g \) may not capture enough information about the values returned by that function in order to allow the desired property to be established at the caller (client) \(f \). For example, consider the Dafny [16] code shown in Figure 1. The Dafny verifier rejects this code, complaining that it cannot prove the postcondition for \(\text{main} \). The problem here is not the code, which is clearly correct, but that the contract for \(\text{incr} \) is too weak: the post-condition that it returns a non-negative value is not enough to prove the post-condition that \(\text{main} \) returns \(x + 2 \).

\begin{verbatim}
method incr(x: int) returns (r: int)
 requires 0 ≤ x ensures 0 ≤ r
 (r := x + 1;)

method main(x: int) returns (r: int)
 requires 0 ≤ x ensures r = x + 2
 { var tmp := incr(x); r := incr(tmp);)

Figure 1. A Dafny program where \text{main} fails to verify due to a weak specification for \text{incr}.
\end{verbatim}

One might be tempted to use bounded model checking [2] or symbolic execution [14] to enumerate paths through the code in order to find execution traces that witnesses the failure i.e. to find set of inputs that satisfy the pre-condition but which produce an output which violates the post-condition [5]. However, this approach will be fruitless in the case where the code actually satisfies the contract but verification fails due to imprecise specifications for callee functions.

We introduce the novel concept of abstract counterexamples to help programmers debug errors due to imprecise specifications. An abstract counterexample for a function \(f \) and its callee \(g \) is a partial definition of \(g \) that satisfies \(g \)'s contract, but creates a violation of \(f \)'s contract. For the code in Fig. 1 we aim to find an abstract counterexample:

\begin{verbatim}
main(0) = 0
violating the contract of 'main' if incr(0) = 0
Strengthen contract of 'incr'
to eliminate this possibility

This is a partial definition of the callee incr where incr(0) = 0 which satisfies its contract but causes a violation of the caller main's contract. The user can use the above to strengthen incr’s contract to \(r = x + 1 \) to verify main.
\end{verbatim}

In this paper, we develop and evaluate lazy counterfactual symbolic execution, a new technique to generate concrete and abstract counterexamples that localize the causes of failure of static modular verification for non-strict languages like Haskell. We do so via the following concrete contributions.

1. Lazy Symbolic Evaluation Our first contribution is a non-strict symbolic execution (§ 3). Classical symbolic execution engines [3, 20, 32] implicitly assumes eager (call-by-value) semantics, and consequently, as we show in § 2.2, can fail to find simple counterexamples (resp. return spurious counterexamples) that arise (resp. cannot arise) with lazy evaluation. We solve this problem by augmenting classical lazy graph reduction semantics [17, 24, 25] with symbolic variables to reduce terms into Symbolic Weak Head Normal Form.
Form, that only computes values as needed, thereby obtaining the first lazy symbolic execution framework.

2. Counterfactual Branching Our second contribution is the notion of counterfactual branching that allows us to simultaneously conduct a symbolic search for both concrete and abstract counterexamples (§ 4). A counterfactual branch denotes a choice between two alternative implementations of some function, e.g., the function’s concrete implementation or an abstract one derived from the function’s specification. Our key insight is that we can find abstract counterexamples by finding a counterfactual branch from which all concrete executions are safe, but from which some abstract execution leads to an error.

3. Refinement Types as Contracts Our third contribution is to show how to use counterfactual symbolic execution to localize the cause of refinement type errors (§ 5). We show how to translate refinement types into value-level assertions and where refinement type specifications for functions are translated into the abstract implementations to be used at counterfactual branches.

4. Implementation and Evaluation Our last contribution is an implementation of our approach as a tool, G2. We evaluate G2 on a corpus of 7550 refinement type errors from users of LiquidHaskell, a verification tool that has been used to verify various properties of the Haskell standard libraries [34] (§ 6). G2 is able to quickly find counterexamples 97.7% of the time. Of these counterexamples, 57.6% concretely demonstrate how the code fails the specification, and 40.1% are abstract counterexamples caused by an imprecise specification. By comparing the “error”-ing programs with their “fixed” versions we find that the abstract counterexamples correctly pinpoint the library function whose specification was too weak in 96.1% of the cases, demonstrating the importance, effectiveness and practicality of counterfactual symbolic execution in making modular verification more usable.

2 Overview

We start with an overview of our goals and the challenges posed by lazy evaluation and refinement type error localization, and show how we solve these challenges via lazy counterfactual symbolic execution.

2.1 Goal: Symbolic Execution

Our first goal is to implement a symbolic execution engine for non-strict languages like Haskell. Such an engine would take as input a program like:

```haskell
let xs ! j = case xs of
  h: t -> case j == 0 of
    True -> h
    False -> t ! j-1
  i = ?; k = ?
in assert (repl i ! k == i)
```

Figure 2. Program with assertion over an infinite list that strict analyzers would struggle with together with a property, specified as an assertion about the behavior of the program over some unknown inputs, e.g., that the intersect function above was commutative:

```haskell
let xs = ?; ys = ? in assert
  (xs `intersect` ys == ys `intersect` xs)
```

Our engine then symbolically evaluates all executions of the above program (up to some given number of reduction steps) to find a counterexample, i.e., values for xs and ys under which the asserted predicate is False:

```haskell
counterexample: assert fails when
xs = [0, 1], ys = [1, 1, 0]
```

2.2 Challenge: Lazy Evaluation

While there are several symbolic execution engines that can produce the above result [5], including those for functional languages like F* [30], Scala [15], and Racket [31, 32], all of these tools assume strict or call-by-value semantics. This is problematic for a non-strict language (like Haskell.) Strict evaluation can both miss assertion failures, and report spurious failures that cannot occur under lazy evaluation.

Strictness Reports Spurious Failures Consider:

```haskell
let f x = 10; g _ = assert False in f (g 0)
```

Under strict evaluation, g 0 would be computed first, violating the assertion. However, under non-strict semantics, f is evaluated first, and immediately returns 10 without evaluating its argument. Thus, as g 0 is never reduced, the assertion is never evaluated and, hence, does not fail.

Strictness Misses Real Failures Even worse, strict symbolic execution can miss errors in code that relies explicitly on lazy evaluation. For example, consider the code in Figure 2. The code uses two functions, !, which returns the j-th element of the list xs, and repl, which returns an infinite list starting at n. The code asserts that the k-th element of repl i should be i. Strict symbolic execution will keep unfolding the infinite list corresponding to the term repl i, and thus, will miss that the assertion can be violated by lazily evaluating the asserted predicate on a finite prefix.

2.3 Solution: Lazy Symbolic Execution

In this paper we solve the problems caused by strictness, by developing a novel lazy symbolic execution algorithm. At a
high-level, our algorithm mimics the lazy graph reduction semantics of non-strict languages like Haskell, where terms are only reduced by need, up to Weak Head Normal Form (WHNF), i.e. enough to resolve pattern-match branches. Our key insight is that we can generalize the classical semantics to account for symbolic values that denote unknown inputs, by developing a notion of Symbolic WHNF (SWHNF), where terms are reduced up to symbolic variables whose values are constrained by path constraints that capture the branch information leading up to that point in the execution.

Symbolic States Symbolic execution evaluates a State, which is a tuple \((E, H, P)\) comprised of an expression \(E\) being evaluated, a heap \(H\), mapping variables to other expressions, and path constraints \(P\), which are logical formulas constraining the values of symbolic variables in \(E\) and \(H\).

Symbolic Execution Tree Figure 3 shows the tree of states resulting from symbolic executing the code in Figure 2. Each node is a symbolic state, and has children corresponding to the states that the parent node can transition to.

- **Initial State**: The initial symbolic state \(S_0\) is comprised of \(E_0\), the source program expression, \(H_0\), the initial empty heap, and \(P_0\), the trivial path constraint (true).
- **Variable Binding**: \(S_0 \rightarrow S_1\) accounts for the let-bindings, which are not evaluated, but are, instead, bound on the heap as shown in \(S_1\). The symbolic variables \(k\) and \(i\) correspond to the (unknown) input values.
- **Variable Lookup and Application**: \(S_1 \rightarrow S_2\) looks up and applies the definition of the list index operator \(!\) to \(rep_1\). \(i\) and \(k\). Due to laziness, we create fresh bindings on the heap, rather than evaluate the arguments.
- **Lazy Evaluation to Symbolic WHNF**: \(S_2 \rightarrow S_3\) looks up \(xs_2\) namely \(rep_1\) \(i\) and \(l\) lazily evaluates it to SWHNF, i.e. precisely enough to determine which of the patterns to branch on. Under strict semantics, the list would have to be completely evaluated before picking a case alternative, but since \(rep_1\) generates an infinite list, this evaluation would never terminate.
- **Pattern Matching**: \(S_3 \rightarrow S_4\) matches the non-empty list against the cons-pattern by introducing fresh binders \(h_4\) and \(t_4\), and binding them to the the respective terms on the heap \(H_4\).
- **Symbolic Branching**: At \(S_4\), the scrutinized expression is \(j_2 = 0\) which, after looking up \(j_3\) in the heap, is \(k = 0\). This contains a symbolic value \(k\) and hence, is in SWHNF, so it could evaluate to true or false. Therefore, there are two possible transitions, to \(S_5\) and \(S_7\). We strengthen the path constraints \(P_5\) and \(P_7\) with \(k = 0\) and \(-k = 0\) respectively, to record the condition under which the transition occurred. \(S_4 \rightarrow S_5\) looks up \(h_4\) to reduce the asserted predicate to a tautology \(i = i\), meaning the assertion holds.

- **Recursive Unfolding**: The symbolic execution continues to explore the other branch, \(S_4 \rightarrow S_7\). Again, the binders are lazily looked up on the heap. Via a sequence of transitions we arrive at \(S_{10}\), where the head of the list is bound to the value \(h_{10} = i + 1\).
- **Assertion Failure**: Again, at \(S_{11}\) we have a symbolic branch on the term \(k - 1 = 0\). This time, however, the true branch transitions to \(S_{12}\) where the asserted predicate has been reduced to \(h_{10} = i\). \(S_{11} \rightarrow S_{12}\) looks up \(h_{10}\) in the heap to find that the asserted predicate, \(i + 1 = i\), is not true. Thus, our symbolic execution reports a counterexample to the assertion in Figure 2.

We can obtain a satisfying assignment (i.e. a model) for the path constraints at the point of violation to obtain concrete values for the symbolic inputs that lead to the failure. This allows us to determine concrete values that violate the assertion. For example, here, the SMT solver tells us that the assertion is violated when \(k = 1\) and not, e.g. when \(k = 0\).

2.4 Refinement Type Counterexamples

A refinement type constrains classical types with predicates in decidable first-order logics. For example, we can specify that the function `die` should never be called at run-time by assigning it the type:

```plaintext
die :: (x : String | false) -> a
die x = error x
```

The refinement type checker will verify that at each call-site, the function `die` is called with values satisfying the condition `false`. As no such value exists, the code will only typecheck if all calls to `die` are, in fact, provably unreachable.

A restricted class of functions may be lifted into refinement types to specify properties of algebraic data types. For example, the following function computes the size of a list:

```plaintext
size [] = 0
size (x:xs) = 1 + size xs
```

Using `size`, one can write a safe head function as:

```plaintext
head :: (xs:[a] | size xs > 0) -> a
head (x:xs) = x
head [] = die "Bad call to head"
```

The input refinement type of `head` states that it is only called with positively-sized lists. As in the second equation the size is equal to 0, the second pattern is inconsistent with the input refinement, and hence, provably never reachable.

Concrete Counterexamples It is often not obvious why a refinement type fails. Consider `zip`, defined below:

```plaintext
zip :: xs:[a] -> (ys:[b]
  | size xs > 0 => size ys > 0) -> [(a, b)]
zip [] [] = []
zip (x:xs) (y:ys) = (x, y):zip xs ys
```

```plaintext
zip _ _ = die "Bad call to zip"
```

The input refinement type of `zip` states that it is only called with lists of the same size. As in the second equation the size is equal to 0, the second pattern is inconsistent with the input refinement, and hence, provably never reachable.
The function iterates over two lists and produces a new list of coresponding pairs. It is rejected by the refinement type checker LiquidHaskell [35] with the vexing error:

```haskell
die "Bad call to zip" = error
```

Running our tool yields the following:

```
asserted types
S7  E7 = assert((t4 ! (j2 - 1)) = i)   H7 = H4   P7 = k ≠ 0
S8  E8 = assert((case xs8 of {h:t → ...}) = i)
    H8 = {xs8 ↦ t4, j8 ↦ (j2 - 1)} ∪ H2   P8 = k ≠ 0
S9  E9 = assert((case ((i + 1) : repl ...) of {...}) = i)
    H9 = H8   P9 = k ≠ 0
S10 E10 = assert((case (j4 = 0) of {True → h10; False → t10 : (j4 - 1)}) = i)
      H10 = {h10 ↦ (i + 1), t10 ↦ repl((i + 1) + 1) ∪ H9}   P10 = k ≠ 0
```

This error can be more confusing than helpful. Instead, a counterexample that illustrates an instance where the verifier rejects a program, may provide better insight. Running our tool yields the following:

```
asserted types
S7  E7 = assert((t4 ! (j2 - 1)) = i)   H7 = H4   P7 = k ≠ 0
S8  E8 = assert((case xs8 of {h:t → ...}) = i)
    H8 = {xs8 ↦ t4, j8 ↦ (j2 - 1)} ∪ H2   P8 = k ≠ 0
S9  E9 = assert((case ((i + 1) : repl ...) of {...}) = i)
    H9 = H8   P9 = k ≠ 0
S10 E10 = assert((case (j4 = 0) of {True → h10; False → t10 : (j4 - 1)}) = i)
      H10 = {h10 ↦ (i + 1), t10 ↦ repl((i + 1) + 1) ∪ H9}   P10 = k ≠ 0
```

```
sumsize (x:xs) = size x + sumsize xs
concat :: x: [[a]] → (v:[a])
    | size v = sumsize x
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xsxs)) =
    (append (append xs ys):xs)
append xs [] = xs
append [] ys = ys
append (x:xs) ys = x:append xs ys
```

This `concat` implementation is correct, but is rejected by LiquidHaskell. To make verification modular, and hence, scalable, at each function call, LiquidHaskell is only aware of the refinement type of the callee, and not the actual definition. Thus, when trying to verify `concat`, LiquidHaskell knows nothing about the value returned by `append`.

Thus, the above example illustrates a common, and confusing, situation where the verifier rejects a program, not because the property being checked does not hold (as in `zip`), but because the specifications for called functions are too weak. Worse, as the code is correct, we cannot report counterexamples, since they do not exist.

Abstract Counterexamples
In this situation, the ideal thing would be to point the user to the function whose type needs to be tightened. We do so by introducing the notion of an abstract counterexample, where we show how the overall property can be violated by using an abstract implementation of the callee that is derived solely from the (refinement type) specification of the callee.

2.5 Localizing Imprecise Refinement Types

Next, consider `concat`, which concatenates a list of lists into a single list, with the goal of verifying that the size of the returned list is the sum of the sizes of the lists in the input:

```
sumsize [] = 0
```
Lazy Counterfactual Symbolic Execution

For example, an abstract counterexample for `concat` is:

```plaintext
concat [[0], []] = [0, 0]
```

violating its refinement type, if

```plaintext
append [0] [] = [0, 0]
```

Strengthen the refinement type of `append` to eliminate this possibility.

The abstract counterexample tells the user that the existing specification for `append` permits the call `append [0] []` to return `[0, 0]`, causing the evaluation of `concat [[0], []]` to return a value that violates its specification.

Crucially, the abstract counterexample points the user to the fact that the error only arises due to the (trivial) refinement type specification for `append` and not due to the actual implementation of the function. Inspired by this message, a user could improve the type refinement on `append` to:

```plaintext
append :: x:[a] -> y:[a]
    -> (z:[a] | size x + size y = size z)
```

which then lets LiquidHaskell verify `concat`.

Countercfactual Symbolic Execution

We can find both concrete and abstract counterexamples with a new technique called counterfactual symbolic execution. We introduce a *counterfactual* branching operator, essentially a non-deterministic choice operator that can evaluate either of its two arguments. Each function definition is replaced with a counterfactual branch that non-deterministically chooses either the concrete implementation, or an abstract version derived solely from the function’s refinement type.

We can then run symbolic execution as before, and report an abstract counterexample at those counterfactual branches where the concrete choice produces no counterexamples, but the abstract one does. In this case, as illustrated above, we can also report exactly how the abstract implementation leads to a property violation.

3 Lazy Symbolic Execution

Here, we describe a core language \(\lambda_G \) (§ 3.1), which draws inspiration from GHC’s Core language \[23\]. We formalize lazy symbolic execution as a novel reduction semantics (§ 3.3). We then show how to extend this language with countercfactual branching (§ 4), and how to use the resulting framework to localize refinement type errors (§ 5).

3.1 Syntax

Figure 4 summarizes the syntax of our core language \(\lambda_G \), a typed lambda calculus extended with special constructs for symbolic execution.

- **Terms** include literals, variables, data constructors, function application, lambda abstraction, let bindings, and case expressions.
- **Case** expressions \(e \ a \ b \ d \) operate on algebraic data types. We refer to \(e \) as the *scrutinee*, and to \(a \) as *alternatives*, each of which maps a pattern \(D \ x \) – comprising a constructor \(D \) and a sequence of (bound) pattern variables \(x \) – to the expression that should be evaluated when the scrutinee matches the pattern. As is standard, Boolean branches correspond to a case-of over the patterns True and False.

- **Symbolic variables** denote some unknown value. We assume that all symbolic binders are to *first order* values: higher-order values are orthogonal and can be handled via the approach of \[31\].

- **Symbolic generator** expressions \(? : \tau \) are used to introduce new symbolic variables of type \(\tau \).

- **Assume** expressions assume \(e_1 \ in \ e_2 \ condition \) the evaluation of \(e_2 \) upon whether \(e_1 \) evaluates to True and cause evaluation to halt otherwise.

- **Assert** expressions assert \(e_1 \ in \ e_2 \ check \) that \(e_1 \) evaluates to True and cause evaluation to CRASH otherwise.

- **Counterfactual** branch expressions \(e_1 \ or \ e_2 \ nondeterministically \) evaluates to either \(e_1 \) or \(e_2 \).

Types Every expression has a type. We write \(e : \tau \) to denote that \(e \) has type \(\tau \). Type checking \(\lambda_G \) is standard for polymorphic functional languages, e.g. the rules used in System \(F^+ \) \[23\], and is omitted for brevity. Assume \(e_1 \ in \ e_2 \) and assert \(e_1 \ in \ e_2 \) require that \(e_1 \) have type Bool. In a countercfactual branch, both expressions must have the same type.

3.2 Symbolic States

Next, we formalize the notion of *lazy symbolic execution* by presenting a new symbolic, non-strict operational semantics for \(\lambda_G \) formalized via rules that show how a program transitions between symbolic states. Figure 5 summarizes the syntax of symbolic states, \(S \), which are tupes of the form \((E,H,P) \). The expression \(E \) corresponds to the term that is being evaluated. The heap \(H \) is a map from (bound) variables \(x \) to terms \(e \). As is standard, the heap is used to store...
We formalize lazy symbolic execution via the transition re-

We write Symbolic Weak Head Normal Form (SWHNF) to account for (unknown) symbolic values. Formally, lookup \(H\) in a state, all other variables are bound, either on the heap, or in the heap, to find the expression it is mapped to, \(e\). If \(e\) is already in SWHNF, it is simply returned by \(\text{Var-Red}\). Otherwise, \(\text{Var-Red}\) reduces \(e\) to an expression, \(e'\), in SWHNF, before both returning \(e'\), and remapping \(x\) to \(e'\) in the heap. Typically, \(\text{Var-Red}\) is simply an optimization in case \(x\) is reevaluated: since Haskell is pure, evaluating \(e\) repeatedly would be semantically correct, but inefficient [17]. However, in Section 3.3.2, we will see that during symbolic execution with symbolic generators or counterfactual branching, this rule takes on a new importance.

Let and \(\text{App-Lam}\) both bind an expression in the heap, without evaluating the expression. \(\text{App}\) reduces the function in a function application, without reducing the arguments.

Primitive operations arguments are evaluated to SWHNF by \(\text{Pr-L}\) and \(\text{Pr-R}\). If both of the arguments of a primitive are concrete literals, \(\text{Pr}\) evaluates the primitive concretely.

Case expressions require the scrutinee be evaluated to SWHNF, so that the correct alternative can be picked. This evaluation is performed by \(\text{Case-Ev}\). If the scrutinee is concrete, \(\text{Case}\) continues evaluation on the correct alternative expression. If the scrutinee is a symbolic variable, \(\text{Case-Sym}\) nondeterministically chooses an alternative expression.

3.3.2 Symbolic Generators

We now turn our attention to the reduction rules in Figure 7, which shows constructs particular to symbolic execution.

Counterfactual branches proceed nondeterministically by either \(\text{Ch-L}\) or \(\text{Ch-R}\), allowing reduction on either \(e_1\) or \(e_2\).

Symbolic generators are evaluated using \(\text{Sym-Gen}\), which introduces a fresh symbolic value \(s\).

Assume expressions are evaluated by first reducing the predicate \(p\) to SWHNF using \(\text{Assume-Ev}\). Then, the rule \(\text{Assume}\) adds the predicate to the path constraint, thereby recording that the predicate must hold for computation to proceed.

Assert expressions are handled similarly in that the predicate is first reduced to SWHNF. Next, we check that the predicate actually evaluates to \(\text{true}\) – otherwise execution CRASH-ES due to an assertion violation. To this end, \(\text{Assert-Crash}\) queries the SMT solver for satisfying assignments of rules in Figures 6 and 7. For some states, more than one rule applies, or there is more than one way to apply a single rule. From the perspective of a single execution, this requires a nondeterministic decision to apply one of the rules. However, during symbolic execution, we split the state, by applying each potential rule, allowing us to explore all possible programs up to some bounded number of transitions.

3.3 Symbolic Execution Transitions

We formalize lazy symbolic execution via the transition relation \(S \xrightarrow{\epsilon} S'\) that says that the state \(S\) takes a single step to the state \(S'\). The transition relation is formalized via the rules in Figures 6 and 7. For some states, more than one rule applies, or there is more than one way to apply a single rule. From the perspective of a single execution, this requires a nondeterministic decision to apply one of the rules. However, during symbolic execution, we split the state, by applying each potential rule, allowing us to explore all possible programs up to some bounded number of transitions.

- **Well-formedness** Only symbolic variables may occur free in a state, all other variables are bound, either on the heap, or by a lambda, let, or case expressions. We denote the binding of a variable \(x\) to an expression \(e\) in the heap \(H\) as \(H[x = e]\). We write \(\text{lookup}(H, x)\) for the expression to which \(x\) is bound in \(H\). If there is no such binding, \(\text{lookup}(H, x)\) is not defined.

- **Symbolic Variables and Primitive Applications** \(\text{Sym}(e)\) checks if an expression is a symbolic variable, or is a primitive application that cannot be concretely reduced:

 \[
 \text{Sym}(e) = \begin{cases}
 \text{True} & e = s \\
 \text{True} & e = e_1 \oplus e_2 \wedge (\text{Sym}(e_1) \wedge \text{Sym}(e_2)) \\
 \text{True} & e = e_1 \oplus i \wedge \text{Sym}(e_1) \\
 \text{True} & e = i \oplus e_2 \wedge \text{Sym}(e_2) \\
 \text{False} & \text{otherwise}
 \end{cases}
 \]

- **Symbolic Weak Head Normal Form** The essence of non-strict semantics, e.g. in Haskell, is to reduce expressions to Weak Head Normal Form (WHNF) [25], i.e. a literal, lambda abstraction, or data constructor application. Consequently, the heart of our lazy symbolic execution is a notion of Symbolic Weak Head Normal Form (SWHNF), that generalizes WHNF to account for (unknown) symbolic values. Formally, an expression \(e\) is in SWHNF if the predicate \(\text{SWHNF}(e)\) holds:

 \[
 \text{SWHNF}(e) = \begin{cases}
 \text{True} & e \equiv l \\
 \text{True} & e \equiv s \\
 \text{True} & e \equiv D \bar{x} \\
 \text{True} & e \equiv \lambda x . e \\
 \text{True} & e \equiv e_1 \oplus e_2 \wedge \text{Sym}(e) \\
 \text{False} & \text{otherwise}
 \end{cases}
 \]
Generators and Counterfactual Branching. For instance, consider the predicate to evaluate to False our symbolic variables, that falsify the predicate,

\[(x, H, P) \mapsto (e', H', P') \]

\[(f, H, P) \mapsto (f', H', P') \]

\[(e, H, P) \mapsto (e', H', P') \]

\[(e, H, P) \mapsto (e'[x'/x], e'[x'/x]) \]

\[x' \text{ fresh} \]

\[\lambda x . x \mapsto ? \text{ in } f \mapsto f \]

\[\lambda x . x \mapsto ? ; y = f \mapsto y \times y \]

\[\text{Fig. 6. Lazy Transition Rules} \]

\[\text{Fig. 7. Symbolic Transition Rules} \]

\[\text{let } f = \lambda x . x \mapsto ? \text{ in } f \mapsto f \]

\(\text{let } f = \lambda x . x \mapsto ? ; y = f \mapsto y \times y \)
but during symbolic execution, it allows us to control non-purity. In the modified program, in Figure 8b, it means that, even though the reduction is performed only when needed, the reduction of \(y \) (and thus the reduction of \(f \)) is still performed only once. Thus, there are only 2 possible values in SWHNF: 4, and \(s \times s \).

3.3.4 Completeness of Symbolic Execution

We write \(\to_c \) for the concrete transition relation obtained by replacing the rule \(\text{SYM-GEN} \) with \(\text{CONC-GEN} \), shown below, which replaces a symbolic generator with some total expression of the suitable type:

\[
\frac{\mathcal{H} \vdash e' : \tau}{(s : \tau, H, P) \to_c (e', H, P)} \quad \text{CONC-GEN}
\]

The concrete transitions correspond exactly to the usual standard non-strict operational semantics; there are no symbolic values anywhere, and the path constraint is just \(\text{True} \).

Completeness Let \(\to^* \) and \(\to_c^* \) respectively denote the reflexive transitive closure of \(\to \) and \(\to_c \). We can prove by induction on the length of the transition sequences that if the concrete execution can \text{CRASH} then so can the symbolic execution:

Theorem 1. \((e, \emptyset, \text{True}) \to^*_c (\text{CRASH}, \cdot, \cdot)\) iff \((e, \emptyset, \text{True}) \to^\ast (\text{CRASH}, \cdot, \cdot)\).

4 Counterfactual Symbolic Execution

Modular verifiers allow users to write and automatically check contracts (specifications, describing preconditions or postconditions) on functions. Unfortunately, verification errors can be difficult for users, as error messages typically involve logical formulas, which may not be obviously linked to the written contract.

As discussed in § 2.4 and § 2.5 we use symbolic execution to find two types of counterexamples. Ideally, we find concrete counterexamples, i.e., actual function inputs that violates a contract. However, we also introduce abstract counterexamples, found via counterfactual symbolic execution, to help debug spurious errors. As shown in § 2.5, counterfactual symbolic execution finds partial function definitions for directly called functions that obey their function contracts, but demonstrate why the caller’s contract is not verified.

Our goal, then, is to find a minimally abstract or least abstracted counterexample—either a concrete counterexample, or a counterexample with a minimal number of abstracted functions. Such states are likely to be the most understandable to a user, as they most closely resemble an actual execution of the program.

Contracts To this end, we introduce three functions that we require on the original contracts: \(\text{pre} \) returns just the preconditions, \(\text{post} \) returns just the postconditions, and \(\text{toExp} \) converts a contract to a \(\lambda \) expression. Here, we assume these functions can be implemented for some arbitrary set of contracts. In § 5, we show these functions over LiquidHaskell refinement types.

Counterfactual Function Definitions

To find abstract counterexamples, we create assertion functions and counterfactual functions. Given a function \(f \equiv \lambda x. e \) with a contract \(c \), we define its assertion function as:

\[
f^e \equiv \lambda x. \text{let } r = f \ x \ \text{in } \text{assert} (\text{toExp}(c) \ x \ r) \in r
\]

We define the counterfactual function of \(f \) as:

\[
\tilde{f} \equiv \lambda x. f^u \ x \ \text{□}
\]

(\(\text{let } s = ? \ : r \ \text{in } \text{assume} \text{toExp}(\text{post}(c)) \ x \ s \) in \(s \))

When symbolic execution reduces \(\tilde{f} \), it binds the arguments to lambdas as usual. Then, due to the counterfactual branch, it splits into two symbolic states. We will refer to these as the left and right states, corresponding to the left and right of the counterfactual choice. The left state corresponds to normal execution, with an assertion that both ensures that the function’s preconditions are met, and that the function returns values that satisfy its postcondition. In the right state, we introduce a new symbolic variable, \(s \), that is assumed to satisfy the function’s postcondition (as defined by the contract \(c \)), but which otherwise makes no use of \(f \)’s definition. Therefore, \(s \) can take on any value that \(f \) would be allowed to return by its postcondition. This allows us to find abstract counterexamples when \(f \)’s implementation is correct, but its contract does not describe its behavior precisely enough to verify a caller. The right state does not check that its arguments satisfy its preconditions, because if there is a violation of a precondition, it will also occur in the left case.

We can find (abstract) counterexamples for a function \(f \) of arity \(n \), with contract \(c \). To do so, we define another special copy of \(f \), called \(f_{\text{det}} \). The function \(f_{\text{det}} \) is \(f \), but with each occurrence of a callee function \(g \) replaced by \(\tilde{g} \). This matches how modular verifiers use the implementation of their client functions, by using the definition of \(f \), but only the specifications for library functions when verifying that \(f \) meets its specification.

Then we perform symbolic execution starting from an initial state defined as follows:

\[
\text{assume } (\text{toExp}(\text{pre}(c)) \in ((f_{\text{det}})^u \ s))
\]

\(s \) are symbolic inputs that ensure that any counterexample we find use inputs satisfying \(f \)’s precondition.

In order to find minimally abstract counterexamples, we maintain a counter of the number of right paths selected for each state. Then, we filter the found states, and present only those which require the fewest abstracted functions.

4.1 Search Strategy

Symbolic execution, as described in this paper, is an unbounded and therefore incomplete search technique. When searching for counterexamples, we aim to minimize the number of abstracted functions, but we can almost never actually
prove we succeeded (and a not completely minimized counterexample may still be useful to a user.) Here, we describe two strategies we employ to try to minimize time spent searching, while still finding useful, and close to minimal, counterexamples.

Abstract Counterexample Filtering Presenting only minimally abstract counterexamples allows us to prune during symbolic execution. If we find an assertion violation with \(n \) abstracted functions, we can drop any state- including states which have not finished execution- in which we abstracted \(n + 1 \) or more functions.

Search Deepening The reductions rules in §3.3 implicitly create a (often infinite) tree of states. The order we search the branches of this tree, and how deep we search, is an important consideration to find counterexamples efficiently.

We search in a depth first manner, to some maximal depth. If we have explored all branches, and not found a counterexample, we increase the maximal depth and continue searching. Every time we find a counterexample that is better (has less abstracted functions) than our current best counterexample, but that is deeper in the tree, we also increase the maximal depth.

Thus, this strategy allows searching to continue if better counterexamples are being found by searching deeper in the tree. However, we avoid fruitless search too many states, if they are not producing promising results.

The gradual increase in the maximal depth ensures we are evaluating a variety of states and branches, preventing us from spending too much time on branches that will not yield a counterexample. It often enables us to find a close-to-minimal counterexample fairly quickly, allowing us to prune all states with a greater number of abstracted functions.

5 Refinement Type Counterexamples

Now that we have described a general technique for counterfactual symbolic execution, we turn our attention to leveraging it to generate counterexamples to refinement types, as shown in §2.4 and §2.5.

Refinement Types We support the language of refinement types shown in Figure 9. This subset includes operations on numeric types, measures (e.g. size from §2.5), and refinements on polymorphic arguments. In the refinement language, \(\{ v : b [r_1 \ldots r_k] \mid r \} \) represents the base type, \(b \), refined by the predicate \(r \). The \([r_1 \ldots r_k] \) are type arguments to the base type, which may themselves be further refined.

The \(v \) is an inner bound name, allowing reference to the value of the type in \(r \) and \(r_1 \ldots r_k \). The \(x : r_1 \rightarrow r_2 \) is a function of type \(r_1 \) to \(r_2 \). The \(x \) is an outer bound name to refer to the value of \(r_1 \), allowing it to be referenced in refinements in \(r_2 \).

To use counterfactual symbolic execution for refinement types, we need only convert refinement type specifications to assume and assert expressions. That is, we need only implement the three functions, pre, post, and toExp, described in §4, that describe the contracts of each function.

Pre and Post Figure 10 shows pre and post. pre walks over the function and drops the return type. post keeps the argument bindings, but sets all refinements, except the return type’s refinement, to True. Keeping the bindings is important, as they may be used in the return type’s refinement.

Converting Refinements to Contracts Refinement types are converted to contracts, i.e. asserts and assumes, on the inputs and output of a function. toExp, shown in Figure 11, translates LiquidHaskell refinement types into predicates in \(\lambda_G \). This function has many subparts:

- toExp, creates lambda bindings, giving us names to refer to both the inputs and outputs of the function.

Figure 9. \(\lambda_D \) types

\[
\begin{align*}
\tau &::= \text{Types} \\
&| \{ v : b [r] \mid r \} \\
x &::= \tau \rightarrow \tau \\
n &::= \text{Basic Types} \\
&| \text{Int} \\
&| \text{Bool} \\
&| A \\
r &::= \text{Refinements} \\
&| r == r \\
&| r < r \\
&| r \land r \\
&| \neg r \\
&| x \\
&| m \oplus \\
&| n \\
&| r \lor r \\
&| r \rightarrow r \\
&| \text{true} \\
&| \text{false} \\
m &::= m
\end{align*}
\]

Figure 10. \(\lambda_D \) precondition and postcondition

\[
\begin{align*}
\text{pre}(r) &= \begin{cases}
\{ x_1 : r_1 \rightarrow r \} & x_1 : r_1 \rightarrow (x_2 : r_2 \rightarrow r_3) \\
(x_1 : r_1) & x = x_1 : r_1 \rightarrow r_2 \\
\{ [v : b [r_1 \ldots r_k]] \mid r \} & r = [v : b [r_1 \ldots r_k] \mid r] \\
\{ [v : b [bt(r_1) \ldots r_k]] \mid true \} & r \text{ otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{post}(r) &= \begin{cases}
\{ x : r_1 \rightarrow r_2 \} & r_1 \rightarrow r_2 \\
\{ [v : b [r_1] \ldots r_k] \mid r \} & r = [v : b [r_1] \ldots r_k] \mid r \\
\{ [v : b [bt(r_1)] \ldots r_k] \mid true \} & r \text{ otherwise}
\end{cases}
\end{align*}
\]
toExp(τ) = toExp₃(τ, τ)

toExp₃(τ, τ₀) =
\begin{cases}
\lambda x \cdot \text{toExp}_3(\tau_2, \tau_0) & \tau = x : \tau_1 \rightarrow \tau_2 \\
\lambda x^F \cdot \text{toExp}_3(x^F, \tau_0) & \text{for fresh } x^F \\
\tau = \{v_1 : b \ [\ldots] \mid r\}
\end{cases}

toExp₄(x^F, τ) =
\begin{cases}
\text{toExp}_3(x, \tau_1) \land \text{toExp}_4(x^F, \tau_2) & \tau = x : \tau_1 \rightarrow \tau_2 \\
\text{toExp}_3(x^F, \tau) & \tau = \{v : b \ [\tau_1 \ldots \tau_k] \mid r\}
\end{cases}

toExp₅(x, τ) =
\begin{cases}
\text{toExp}_3(r_1) \Rightarrow \text{toExp}_5(r_2) & r = r_1 \Rightarrow r_2 \\
\text{toExp}_3(r_1) < \text{toExp}_5(r_2) & r = r_1 < r_2 \\
\text{toExp}_3(r_1) \land \text{toExp}_5(r_2) & r = r_1 \land r_2 \\
\ldots & \ldots
\end{cases}

\text{Figure 11. } \lambda_D \text{ to } \lambda_G \text{ translation}

- toExp₅ \text{ and } \text{toExp}_4 \text{ translate each individual refinement on a type into a } \lambda_G \text{ predicate on a value.}
- toExp₃ \text{ walks over the spine of a LiquidHaskell function type, to apply toExp}_5 \text{ to each argument.}

Polymorphic Data Types LiquidHaskell allows checking refinements on polymorphic type variables. For example, we may refine a polymorphic list \([a]\) to contain only positive integers, by writing \([\{x : \text{Int} \mid 0 < x\}]\). Thus, we require a way to translate LiquidHaskell polymorphic type refinements, into predicates on expressions in \(\lambda_G\). To do this for a type constructor \(\tau\), with type variable \(a\), a higher order function \(p_\tau\) is automatically created. The function takes an expression of type \(\tau\) and a predicate of function type \(a \rightarrow \text{Bool}\). It walks over the structure of the type, conjoining the application of the predicate to each occurrence of \(a\). We can then apply \(p_\tau\) to a predicate expression and an expression of type \(\tau\), to assume or assert that those predicate expressions hold on all type variables in \(p\). For example, on a list, we have:

\[
p_{\text{list}} \ p \ [\] = \text{True} \\
p_{\text{list}} \ p \ (x : xs) = (p \ x) \land (p_{\text{list}} \ p \ xs)
\]

and we translate \([\{x : \text{Int} \mid 0 < x\}]\) to \(p_{\text{list}} (\lambda x . 0 < x)\).

6 Implementation and Evaluation

We next describe the implementation of lazy, counterfactual symbolic execution, and present an evaluation that demonstrates the effectiveness of our method for localizing refinement type errors.

6.1 Implementation

We have implemented lazy symbolic execution for the Haskell language in a tool named G2. It is open source, and available at (omitted for anonymity). We use the GHC API to parse Haskell programs, and Z3 [8] and CVC4 [1] as SMT solving backends. G2 supports a large Haskell98-like subset of the code compiled by GHC, which also includes features not detailed in § 3.1 such as polymorphism. G2 uses a custom version of Haskell’s Base library and Prelude [22]. For a range of modules, functions, and datatypes, G2 can use this custom standard library to symbolically execute programs written with the standard Base and Prelude.

6.2 Quantitative Evaluation

The goal of our evaluation is twofold. Q1 Does symbolic execution find counterexamples that explain refinement type errors? Q2 Do the abstract counterexamples accurately pinpoint the functions whose specifications are too weak to permit type checking?

Our empirical evaluation answers these questions positively. We use G2 to generate counterexamples for refinement type errors on a corpus of programs written by university students using LiquidHaskell for a homework assignment at (omitted for anonymity, collected under IRB #2014009900). The assignment contained a variety of exercises. For some, the students had to write code that implemented a function, and matched a given refinement type. For others, the students were asked to write refinement types for prewritten functions. In total, each students assignment was roughly 150 to 200 lines of code.

Corpus The corpus contains, in total, 10,832 incorrect refinement types. The data was collected by logging the student’s work every time a student typechecked their code with LiquidHaskell. Consequently, the data set comprises traces of files, giving us access to the code at different stages of progression — both the incorrect programs and the correct one that finally type checked.
Preprocessing The corpus was collected from a class run in 2015. LiquidHaskell’s syntax has changed since then, rendering some of the files non-parsable. Altogether, on the student written data set G2 can be applied to 93.6% of the files. From those, we excluded 2136 functions because they were only stubs, which immediately called error. Finding counterexamples for these functions is trivial, because any input would be a counterexample. This left us with a total of 7550 functions to evaluate G2 on.

Search Strategy Our search deepening strategy (§ 4.1) takes two parameters: an amount s to increase the search depth by, if no counterexample is found, and an amount c to increase the search depth by, when a better counterexample is found. Based on our experience with G2 we selected s = 300 and c = 600 as values that appeared to give reasonable results. G2 was given a maximum of 2 minutes to find counterexamples for each function.

Results Figure 12 summarizes the results of our evaluation on the 7550 functions, drawn from actual code written by students. It demonstrates that G2 finds counterexamples for the vast majority of the LiquidHaskell errors. In total, we found counterexamples for 7379, or 97.7%, of the errors. Of those counterexamples, 4354, or 57.6% are concrete, and 3025, or 40.1% are abstract. While G2 has an average runtime of only 17.6 seconds, the median running time is even lower – 7.9 seconds. This shows that G2 is a practical and efficient tool to help debug LiquidHaskell refinement type errors, giving a very positive answer to Q1.

G2 failed to find a counterexample only 2.3% of the time. 1.5% of our failures come from timeouts, while the remaining 0.7% is accounted for by errors in G2, which mostly relate to unimplemented edge cases in LiquidHaskell specifications.

Correctness of Abstract Counterexamples Our benchmarks come from traces of programmers iteratively invoking LiquidHaskell to verify some properties. Thus, we determine whether G2’s abstract counterexamples correctly localize the imprecise specification by comparing each “bad” file – that was rejected by LiquidHaskell, for which G2 found an abstract counterexample – with the first “fixed” file along the user’s trace that was accepted by LiquidHaskell. We say that an abstract counterexample correctly localizes the error if the counterexample blames a call to some function f such that in the “fixed” version (a) the user specifies a different type for f, or (b) the user replaces f with a different function with a stronger type, or (c) LiquidHaskell infers a different type for f e.g. because it is used differently in the code. We say an abstract counterexample is spurious otherwise.

Evaluating Correctness Of the 3025 counterexamples, after discarding 1041 “bad” files that had no “fixed” version (as some students did not finish the assignments) we were left with 1984 abstract counterexamples. We categorized these counterexamples via a combination of scripts and manual inspection as one of (a), (b), (c) or spurious. We find that in

<table>
<thead>
<tr>
<th>Function</th>
<th>Con.</th>
<th>Abs.</th>
<th>Time out</th>
<th>Error</th>
<th>Avg. Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prop_map</td>
<td>13</td>
<td>523</td>
<td>2</td>
<td>8</td>
<td>8.9</td>
</tr>
<tr>
<td>foldr1</td>
<td>607</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10.1</td>
</tr>
<tr>
<td>kmeans1</td>
<td>0</td>
<td>875</td>
<td>22</td>
<td>0</td>
<td>120.5</td>
</tr>
<tr>
<td>prop_concat</td>
<td>877</td>
<td>217</td>
<td>0</td>
<td>5</td>
<td>5.7</td>
</tr>
<tr>
<td>replicate</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>17.9</td>
</tr>
<tr>
<td>mergeCluster</td>
<td>329</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7.2</td>
</tr>
<tr>
<td>collapse</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>prop_zipCluster</td>
<td>18</td>
<td>708</td>
<td>13</td>
<td>2</td>
<td>10.5</td>
</tr>
<tr>
<td>concat</td>
<td>181</td>
<td>80</td>
<td>53</td>
<td>8</td>
<td>58.3</td>
</tr>
<tr>
<td>nearest</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>10.5</td>
</tr>
<tr>
<td>prop_replicate</td>
<td>335</td>
<td>125</td>
<td>0</td>
<td>2</td>
<td>5.7</td>
</tr>
<tr>
<td>expand</td>
<td>49</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>8.3</td>
</tr>
<tr>
<td>length</td>
<td>16</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>40.8</td>
</tr>
<tr>
<td>zipWith</td>
<td>760</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>9.2</td>
</tr>
<tr>
<td>kmeans</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>120.5</td>
</tr>
<tr>
<td>centroid</td>
<td>594</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>prop_size</td>
<td>0</td>
<td>224</td>
<td>2</td>
<td>3</td>
<td>6.7</td>
</tr>
<tr>
<td>mapReduce</td>
<td>93</td>
<td>137</td>
<td>8</td>
<td>8</td>
<td>12.2</td>
</tr>
<tr>
<td>add</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>concat2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10.0</td>
</tr>
<tr>
<td>prop_concat2</td>
<td>36</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5.9</td>
</tr>
<tr>
<td>distance</td>
<td>84</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>9.5</td>
</tr>
<tr>
<td>prop_concat1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6.0</td>
</tr>
<tr>
<td>prop_join</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>5.6</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>7</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Total 4354 3025 115 56 17.6

Figure 12. Evaluation results for errors reported by LiquidHaskell on student homeworks. Con. is the number of reported concrete counterexamples. Abs. is the number of abstract counterexamples reported by G2. Timeout is the number of times G2 timed out before returning counterexamples. Error is the errors encountered in G2 when generating counterexamples. Avg. Time is the average amount of time taken by all runs of G2 reported in the table.

1747 (88.1%) cases the user ends up specifying a different type (a), in 9 (0.4%) cases the user ends up replacing the function (b), and in 151 (7.6%) cases the user ends up changing other code to allow LiquidHaskell to infer the right type needed for verification (c). Thus, we conclude that in 96.1% of the cases, G2’s abstract counterexamples correctly identified the function whose specification was too weak.

Replicate Function One particularly interesting abstract counterexample stood out to us. This counterexample was actually counted as spurious, as it does not fit any of our classifiers for correct abstract counterexamples, but nonetheless shows something interesting about the code. Consider:

```haskell
replicate :: n:Int -> a -> [a] |
size xs == n
```
replicate \(0 \ x = []\)

replicate \(n \ x = x : \text{replicate} \ n \ x\)

replicate is supposed to return a list of the given length, but due to a mistake in the implementation (the counter is never decreased) instead returns an infinite list. However, classical symbolic execution would fail to find a concrete counterexample, because the computation of \(\text{size} \text{ } \text{xs} = n\) would never terminate. However, G2 finds an abstract counterexample for replicate:

\[
\text{replicate } 1 \ 0 = [\emptyset, \emptyset]
\]

violating its refinement type, if

\[
\text{replicate } 1 \ 0 = [\emptyset]
\]

If the first recursive call to \(\text{replicate } 1 \ 0\) returns \([\emptyset]\), the the outer call to \(\text{replicate } 1 \ 0\) returns \([\emptyset, \emptyset]\), violating the refinement type.

Our primary motivation to develop abstract counterexamples was to aid in cases where the specification was insufficient. Therefore, it was a surprising discovery that it can also provide output in cases of non-termination.

7 Related Work

Debugging Verification Debugging [6] describes an IDE for Dafny that helps debug genuine and spurious failed verification conditions. Like our work, it uses a symbolic execution based approach to find concrete counterexamples. However, for spurious errors, it simply displays the SMT model, which, unlike abstract counterexamples, does not pinpoint any specific function whose specification needs strengthening for verification to succeed.

Haskell Libraires, Program Analysis, and Testing

Catch [18] and Reach [19] are static analyses for Haskell that look for specific kinds of errors as opposed to our general symbolic execution. QuickCheck [7] and SmallCheck [26] and Target [27] test properties by running Haskell code on large numbers of random or SMT-generated, concrete inputs. While either could potentially be used to generate concrete counterexamples from LiquidHaskell types, neither produces abstract (counterfactual) counterexamples.

Haskell Verification

Xu’s work on static contract checking [38, 39], relies on a symbolic simplifier, parts of which resemble our reduction rules (§ 3.3.) Similarly, Halo [36] and LiquidHaskell [35] aim to verify properties of Haskell programs. However, in contrast to G2, these tools aims for verification, as opposed to refutation which is the goal of our lazy reduction-based symbolic execution. None of them produce abstract counterexamples when verification fails.

Symbolic Execution for Functional Languages

CutEr [10, 11] is a symbolic execution engine for Erlang programs. SCV is a static contract verifier for Racket based on symbolic execution [31] and [20]. Racket and Erlang are strict languages, and thus and thus, neither of the above tools considers lazy evaluation, which requires a different approach as demonstrated in (§ 2). Further, to our knowledge, neither of the above scales to check inductive properties (e.g. size, height) of recursive datatypes (e.g. lists, trees). Finally, none of them produce abstract counterexamples to pinpoint weak specifications.

ROSETTE [32] and SmtEn [33] are general purpose frameworks that provide nice interfaces to SMT solvers to enable solver-aided programming in Racket and Haskell respectively. These frameworks make it easy to use the respective host languages as a convenient way to formulate symbolic search problems. While these frameworks could be used to implement symbolic execution engines (for Racket, Haskell or other languages) they do not, by themselves, perform search or produce counterexamples.

Symbolic Execution for Imperative Languages

There are many symbolic execution engines for imperative languages, including Dart [12] and Cute [28] for C. Symbolic Pathfinder [21] for Java, Pex [30] for .NET, Sage [13] for x86 Windows applications, and EXE [4] and its sequel Klee [3] for LLVM. The execution semantics of imperative programs are quite different from ours, but other techniques (such as path search strategies) are likely to be applicable to Haskell symbolic execution.

8 Conclusion

We presented counterfactual symbolic execution for non-strict languages, and used it to find counterexamples that illustrate concretely or abstractly why a modular checker fails to verify a program. Our evaluation on a large corpus of 7550 verification errors from users of LiquidHaskell demonstrates that we can find counterexamples to 97.7% of errors. Of these: (1) 57.6% of the errors correspond to mistakes in the code that can be explained via concrete counterexamples, and (2) an additional 40.1% of the errors yield abstract counterexamples, which 96.1% of the time correctly pinpoint the imprecision that precludes verification. Thus, our results show that by generalizing the notion of counterexamples via counterfactual execution, we can quickly, automatically, and accurately guide the puzzled developer to the part of their code or specification that they need to fix.

References

Lazy Counterfactual Symbolic Execution

